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Spectral imaging of time-resolved anisotropy: theory and
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Time-resolved fluorescence anisotropy on the nanosecond time scale is useful for the study of the rapid
rotation of macromolecules. A system combining the capabilities of fluorescence spectral imaging with time-
resolved fluorescence anisotropy and enabling the wide-field measurement of the spectroscopic parameters
of fluorophores is discussed. The phasor approach is used to quantitatively analyze the time-resolved
fluorescence anisotropy by transforming the polarized parallel and perpendicular components to the phasor
space in the frequency domain, respectively, and a unique way to calculate the fluorescence rotational
correlation time is put forward. Experimental results prove that the phasor approach is a proper model
for the time-resolved fluorescence anisotropy.
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Time-resolved fluorescence depolarization on the
nanosecond time scale is a powerful technique for the
study of the rapid rotations of molecules in liquids. The
basic idea is that a fluorophore excited by polarized light
will also emit polarized light. If the fluorophore is mov-
ing, the fluorescence tends to “be depolarized”. The “de-
polarized” effect is the greatest with fluorophores freely
tumbling in solution[1,2]. By using pulsed or modulated
light sources and gated controlled intensified camera, we
can use traditional wide field microscopy to visualize the
distribution of the fluorescence anisotropy or the “depo-
larized” effect in the complex biological system pixel by
pixel[1−6].

Measurements of fluorescence lifetime normally consist
of a light source and a detector. A series of images are
collected while the time or phase delay is shifted between
the excitation source and the detector. This can be ex-
tended to the time-resolved anisotropy measurement by
providing a polarized excitation source and collecting
two sets of images. The first set is collected with an
excitation polarizer oriented parallel to the analyzing
polarizer and the second set with it oriented perpendic-
ular. If N images are collected in each series, and each
image collected is a spectral image (x, λ), and then the
intensity data can be indexed as p‖(x, λ, n) and p⊥(x, λ,
n), where n is an index running from 1 to N , x is the slot
width of the spectrograph, λ is the wavelength, and the

subscript ‖ or ⊥ refers to the orientation of the analyzing
polarizer. To obtain a time-resolved spectral image, the
parallel and perpendicular images are summed, ps(x, λ,
n)= p‖(x, λ, n)+2p⊥(x, λ, n)[1,6]. The time-resolved
anisotropy r(x, λ, n) with an exponential tail can also be
presented as the function of parallel and perpendicular
components[1,6]:

r(x, λ, n) =
p‖(x, λ, n)−p⊥(x, λ, n)

p‖(x, λ, n) + 2p⊥(x, λ, n)

= [r0(x, λ) − r∞(x, λ)] · exp

[
−

n

θ(x, λ)

]

+ r∞(x, λ),

ps(x, λ, n) = p0(x, λ) · exp

[
−

n

τ(x, λ)

]
, (1)

where r0 is the fundamental anisotropy, r∞ is the infinite
anisotropy, θ is the molecule rotational correlation time,
τ is the fluorescence lifetime, and p0(x, λ) = ps(x, λ, 0).
If we define the fluorescence joint time ξ as

1
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1
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1
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, (2)

Eqs. (1) and (2) form the system of the linear equations.
Their roots can be rewritten as

p‖(x, λ, n) =
p0(x, λ)

3
·
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. (3)

It is noted that neither p‖ nor p⊥ is single exponential decay, but bi-exponential process, represented by the points

inside and outside the semicircle in the phasor space, respectively[7−10]. From Eq. (3), we obtain

∆p(x, λ, n) = r(x, λ, n) · ps(x, λ, n)

= p0(x, λ) ·

{
[r0(x, λ) − r∞(x, λ)] · exp

[
−

n

ξ(x, λ)

]
+ r∞(x, λ) · exp

[
−
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τ(x, λ)

]}
. (4)

1671-7694/2010/100937-03 c© 2010 Chinese Optics Letters



938 CHINESE OPTICS LETTERS / Vol. 8, No. 10 / October 10, 2010

If r∞= 0, △p is a single exponential decay with the
time constant ξ defined in Eq. (2), represented by a
point on the semicircle in the phasor space[7,8,10]. For
the case of r∞ 6= 0, it is a point by the linear interpola-
tion between the point (0, 0) and the point representing
fluorescence joint time ξ weighted by r∞ and (r0–r∞) in
the phase space, respectively.

In Refs. [3,6], the parallel and perpendicular image
data are separately Fourier transformed to P‖,⊥(x, λ, ω),
and the frequency-dependent anisotropy r(x, λ, ω) and
the phase difference ∆φ(x, λ, ω) are computed by

r̃ (x, λ, ω) =

∣∣P‖ (x, λ, ω)
∣∣ − |P⊥ (x, λ, ω)|∣∣P‖ (x, λ, ω)

∣∣ + 2 |P⊥ (x, λ, ω)|
, (5)

φ‖,⊥ (x, λ, ω) = tan−1

[
Im

(
P‖,⊥ (x, λ, ω)

)

Re
(
P‖,⊥ (x, λ, ω)

)
]

,

∆φ (x, λ, ω) = φ‖ (x, λ, ω) − φ⊥ (x, λ, ω) . (6)

When r̃ is evaluated using the zero frequency coeffi-
cients, it yields rDC; when ω is evaluated using a single
modulated frequency ω0 = 2πf , rAC results. The rota-
tional correlation time θ can be computed from the vis-
cosity η, the hydrodynamic volume V , the gas constant
R, and the absolute temperature T :

θ =
ηV

RT
. (7)

Equations (5) and (6) are the basestone of the mea-
surement of the time-resolved anisotropy in the frequency
domain[3,6], and are just suitable for a spherical rotator.
However, in a complex situation the decay of anisotropy
is not single exponential since the motion of a molecule
occurs along different axes with different rates[1]. Be-
cause infinite anisotropy gives a contribution to the po-
larization, and cannot be eliminated a priori, we can
easily find that Eq. (5) is not the Fourier transform of the

Fig. 1. Experimental system (rsFLIM) configuration. (a)
Schematic of rsFLIM; (b) photo of rsFLIM; (c) schematic of
the spectrograph.

time-resolved anisotropy according to Eq. (1), and rAC

is not the anisotropy at the modulated frequency f .
This is the reason that the relation of rAC from Eq. (5)
and viscosity does not conform to the Perrin equation[6].
The best way to quantitatively analyze the time-resolved
anisotropy and calculate the rotational correlation time
without prerequisite is the phasor approach deduced
from the difference between the parallel and perpendicu-
lar components according to Eq. (4). Another advantage
is to dodge the division which often causes ill-posed er-
rors at the tail of the time-resolved anisotropy.

In order to verify the theoretical model, the experi-
mental system (rsFLIM) was built as an add-on to an
inverted microscope, as shown in Figs. 1(a) and (b)[6].
The microscope was illuminated using light emitting
diodes (LEDs). After passing through a polarizer, the
linearly polarized light was directed into a liquid crys-
tal display (LCD) polarization rotator, which rotated the
polarization either 0◦ or 90◦ directly under computer con-
trol. The reflected fluorescence light from the sample was
collected through an analyzer, followed by an imaging
spectrograph (see Fig. 1(c)) to a modulated image inten-
sifier and detected with a cooled charge-coupled device
(CCD) camera. The spectrograph was calibrated accord-
ing to Ref. [11]. The LED and the intensifier gain were
modulated at the same frequency (60 MHz). A series
of images were acquired while adjusting the relative phase
delay between the intensifier and the LED. Two sets of
measurements were made with the controlled polariza-
tion rotator oriented either 0◦ or 90◦ relative to the ana-
lyzing polarizer. To validate the accuracy of the imaging
system for the measurement of wavelength-dependent
anisotropy, experimental data were obtained from a se-
ries of bulk glycerol/water and rhodamine 6G mixtures.

The two-dimensional (2D) maps of the spectrum and
anisotropy from the mixtures of 59% glycerol and 10-
µmol/L rhodamine 6G are shown in Fig. 2, where the
parallel axis is the wavelength λ and the perpendicular
axis is the slit width of spectrograph x. As the solution of
10-µmol/L rhodamine 6G mixed with 91% glycerol and
deionized water is a high viscosity liquid, the rotation of

Fig. 2. 2D maps of the spectrum and time-resolved anisotropy
measured from the mixtures of 59% glycerol and 10-µmol/L
rhodamine 6G. It is noted that the light intensities are thresh-
old and only limited region (510 nm < λ < 670 nm) is chosen
to be displayed.
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Fig. 3. Fluorescence joint time and fluorescence rotational
correlation time. (a) Polarized phasor histograms of the fluo-
rescence lifetime and joint time of 10-µmol/L rhodamine 6G
(R6G) solutions mixed with 91% glycerol (Gly); for r∞ = 0,
△p = p0r0exp(–n/ξ), according to Eq. (4), is a single expo-
nential decay with the time constant ξ, represented by a cir-
cular histogram distribution on the semicircle in the phasor
space. (b) Relation between the concentration of Gly and the
fluorescence rotational correlation time. It is noted that the
light intensities are threshold and only limited region (540 nm
< λ < 600 nm) is chosen to be displayed.

Fig. 4. Relation between the fluorescence rotational correla-
tion time and the time-resolved anisotropy: (a) θ and △φ; (b)
θ and rAC.

relatively small molecule of rhodamine 6G is impeded by
its circumstance. Its polarized phasor plot deduced from
Eq. (4) is shown in Fig. 3(a), where the histogram of the
fluorescence joint time is a circular Gaussian distribution
with the center ξ = 2.84 ns located on the semicircle, and
it hints that the physics of the fluorescence joint time is
single exponential decay. According to Eq. (2), the cor-
responding rotational correlation time is calculated to be
θ = 12.51 ns. By the same way above, the rotational cor-
relation time is calculated for 10-µmol/L rhodamine 6G
solutions mixed with 0%, 15%, 37%, 45%, 59%, 74%, and
91% glycerol and deionized water, and the wavelength-
dependant relations of the viscosities and the rotational
correlation time for the whole series of the solutions are
shown in Fig. 3(b). They follow a nearly linear rela-
tion in the logical plot, corresponding to Eq. (7). The
relation between the rotational correlation time θ and
the modulated phase delay △φ is shown in Fig. 4(a),
which pronounces a hump; while the relation between
the rotational correlation time θ and the time-resolved
anisotropy rAC is shown in the Fig. 3(b), which pro-

nounces nonlinear rising. Both relations conform to the
theoretical model[1,2].

The fluorescence time-resolved anisotropy can be eval-
uated by the parameters: rDC, rAC, △φ, θ[3], and the
new parameter ξ. Among them, the dynamic ranges of
the fluorescence rotational correlation time θ and fluores-
cence joint time ξ are much larger than others. However,
unlike fluorescence lifetime, it is impossible to present
the rotational correlation time in the phasor space, and
this impedes its application. Because the fluorescence
joint time ξ can be transformed to the phasor space, it
is particularly useful to distinguish multiple fluorescence
cycles using the concept of trajectories and mapping
between the phasor space and intensity imaging[12]. It
is the most suitable parameter to weigh for the macro-
molecule dynamics.

In conclusion, we have discussed different methods to
analyze the fluorescence time-resolved anisotropy, and
proven that the phasor approach could be widely appli-
cable without prerequisite, no matter the measurement
is done in the frequency domain or in the time domain.
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